C-Band Optical Amplifiers (BOAs and SOAs), 1550 nm

30 Sep.,2024

 

C-Band Optical Amplifiers (BOAs and SOAs), nm

The center wavelength of a BOA can be readily tailored for specific applications. It is quite common to adjust the BOA wavelength spectrum to match the specific laser source. Please contact us if you have custom wavelength requirements for pilot-projects or OEM applications.

Check now


Click to Enlarge
When current is applied across the ridge waveguide, excited state electrons are stimulated by input light, leading to photon replication and signal gain.

Features

  • Booster Optical Amplifier (BOA)
    • Polarization Maintaining: Amplifies Only One Polarization State
    • Single Mode (SM) or Polarization-Maintaining (PM) Fiber Pigtails (1.5 m) with FC/APC Connectors
    • Free-Space Chips Offered on Submount or Heatsink
    • Typical Applications: Boosting Laser Transmitters, Compensating for Transmit MUX/DeMUX Insertion Loss, Optical Shutter
  • Semiconductor Optical Amplifier (SOA)
    • Polarization Independent: Amplifies All Polarization States
    • SM or PM Fiber Pigtails (1.5 m) with FC/APC Connectors
    • Typical Applications: Inline Amplifier, Detector Pre-Amp, Fast Optical Switch
      (~1 ns Switching Speed)

BOAs and SOAs are single-pass, traveling-wave amplifiers that perform well with both monochromatic and multi-wavelength signals. Since BOAs only amplify one state of polarization, they are best suited for applications where the input polarization of the light is known. For applications where the input polarization is unknown or fluctuates, SOAs are required. However, the gain, noise, bandwidth, and saturation power specifications of a BOA are superior to that of a SOA because of the design features that make the SOA polarization insensitive.


Click to Enlarge
Our SOAS and BOAP optical amplifiers are also available in the

Our SOAS and BOAP optical amplifiers are also available in the S7FCS and S9FCP benchtop optical amplifiers, respectively.

If you want to learn more, please visit our website Hornby Electronic.

Thorlabs offers fiber-coupled BOAs and SOAs that exhibit low coupling losses, as well as free-space BOAs as a chip on submount (C) or chip on heatsink (H). Losses typically range from 1.5 to 2.5 dB for the fiber-to-chip and chip-to-fiber coupling (each). This affects the total gain, noise figure (NF), and saturation power (Psat). While the gain produced by the amplifier exceeds that of the losses, these losses remain an important factor in determining the device's performance. For instance, a 1 dB drop in input coupling efficiency increases the noise figure by 1 dB. Alternatively, a 1 dB drop in output coupling decreases the saturation power by 1 dB.

Mount and Driver Options
These butterfly packages are compatible with the CLD laser diode mount with integrated controller and TEC. When operating the BOAs on this page with the CLD, the orientation for type 1 pin configurations should be used. They are also compatible with the LM14TS and LM14S2 mounts, which can be used with our laser diode, TEC, and combined current/TEC controllers. When operating these lasers in environments with more than 5 °C variation in temperature, we recommend using the LM14TS mount, which provides active control of the butterfly package's case temperature to stabilize the amplifier's output wavelength and power.

Center Wavelength Note
The center wavelength (CWL) of the ASE spectrum in broadband semiconductor devices such as optical amplifiers may show variation between lots. Please refer to the Specs tab for the CWL tolerances of each particular model. For applications in which a specific ASE center wavelength is a critical concern, please contact Tech Support for information on the CWL of currently available lots.

For more information, please visit China Diode Ultra Fast Recovery Factory.