Fiber Optic Networks have different specifications and characteristics. For this, there’s different fiber optic patch cable types that you can choose from to fit your network best:
A fiber optic cable network can be built with different types of fiber: single mode or multi mode. Within single mode it can be OS1 or OS2; within multi mode it can be OM1, OM2, OM3, OM4 or OM5.
The optical patch cord must follow the type of fiber installed in the cable. That is, we cannot have the distribution cable in single mode and the patch in multi mode, or vice versa.
Within single mode there is compatibility between OS1 and OS2, but in multi mode this compatibility only exists between OM2, OM3, and OM4. This compatibility is from largest to smallest only.
If the patch is between active equipment, we must pay attention to the distance and speed of communication that we want to obtain, as well as the type of emitter that the active devices have (LASER or LED).
However, when choosing a patch cord for an installation, all these parameters are conditioned to the other components of the network (assets and cables). The patch has to guarantee compatibility between the other components.
This defines the amount of fiber strands the patch cord contains.
Fiber optic cable has become the go-to choice for a variety of applications by data center managers. The reasons are many, including advances in cable technology that make it an even better choice. But there are several things to consider when choosing fiber optic cable to ensure it’s the right fit for the application. Here are seven of the most important ones.
One of the big advantages of fiber optic cable is the loss factor: fiber only loses 3% of data over 100 meters compared to much greater losses with copper cables like CAT6 cables. While copper may be a great choice for short distances, the longer the cable needs to be, the bigger advantage to choosing fiber optic cable.
So the first factor to consider when choosing fiber optic cable is the distance the data must travel.
Fiber is fully resistant to interference from various sources like power lines, lightning storms, and even deliberate scrambling and disruption. So while the first consideration is how far the data must travel, the second consideration is where the data may travel. In data centers, whether cables are managed by running overhead or the less common instance of running through underfloor spaces, there can be sources of interference in or near that path.
This is also true in edge data centers, where everything is more compact and closer together. This is also true in modular data centers, and the right fiber cable can ensure that you can scale quickly and easily as needed. As we move toward collocation and hyper scaling, this becomes even more important.
Data centers must be prepared for the future, and the bandwidth your cables can handle is a big part of that. For instance, the rise in the use of OM5 cables over OM3/4 especially in new builds is an indication that data centers are preparing for increased 5G and traffic from VR and AR applications.
This is essential to prepare for the coming 400G demands, especially in Edge data centers. As “work from home” or “work from anywhere” becomes the norm, even smaller residential data centers will be inundated with new traffic, as we saw through the COVID-19 pandemic. It seems that more companies are shifting to hybrid workforces, moving their corporate headquarters out of city center areas that are more expensive to rent, and even enabling partially or fully remote workforces.
Combine that with increases in “shopping from home” and multiple streaming devices, and speed and bandwidth are more important than ever.
Of course, security is one of the top concerns for any data center. A single breach can put an entire company out of business, and result in serious issues if the data of thousands of customers is compromised. While most security issues are found in software and in the human factor (like compromised passwords) there is still a certain amount of risk in physical hardware.
However, fiber cables are difficult to compromise without the intrusion being detected, which means at the very least, using fiber cables, especially in areas where they could be potentially compromised physically, is a vital part of an overall data center security plan. Choosing the right cable in the right place can make the difference between protecting your data center’s security and digital assets, and a potentially costly data breach.
Over time, thinner fiber cables that carry as much data as their larger counterparts have been developed, making it practical to use fiber nearly anywhere. These thinner cables can also be bent and routed easily, saving space in your cable management systems.
Thinner cables also contribute to higher airflow and more efficient cooling, another potential area of cost savings. Fiber cables can also be bundled, organized, and labeled easily, preventing the spaghetti mess that often accumulates at the rear of server racks. Of course, this can also be prevented by having a better cable management plan in place.
In short, consider the size of cable you are using in any given area, and weigh that with other factors like distance, interference, and bandwidth.
Above, we mentioned OM5 being the future of fiber cables, but their wide adoption will come as they are produced in various lengths and sizes on a larger scale. This is because at the moment, they are produced to custom specifications. However, as OM3/4 are still viable and compatible with OM5, you can update your data center in incremental stages, and still utilize the less expensive OM3/4 cables as needed.
You’ll want to weigh cost against performance. Yes, OM5 is the best way to prepare for the future, but that can be done in cost-effective stages as your data center changes and grows. Replacing cables when you are doing moves and changes, or a new build will save you money in the long run.
Choosing fiber optic cable is easy when it comes to durability, as it’s an extremely durable cable for the most part. It is important that you evaluate where and how the cable is being used when choosing the proper cable. Where bends happen, and in an area where there may be more moves and changes than normal, you will want the most durable cable for that application.
Fiber comes in different diameters and insulation levels, and so you should be sure to choose the right one for that particular application. Evaluate several ways you can improve cable use to increase efficiency and scalability.
When choosing fiber optic cable that’s the best fit in any given application, be sure to take all of these factors into consideration. Need more information? You can check out some of the great information on our blog and in our various white papers, but if you still have questions, reach out to us. We’d love to start a conversation about how we can meet your data center cabling needs at any scale.
Louis Chompff, Founder & Managing Director, AnD Cable Products
Louis established AnD Cable Products – Intelligently Designed Cable Management in 1989. Prior to this he enjoyed a 20+ year career with a leading global telecommunications company in a variety of senior data management positions. Louis is an enthusiastic inventor who designed, patented and brought to market his innovative Zero U cable management racks and Unitag cabel labels, both of which have become industry-leading network cable management products. AnD Cable Products only offer products that are intelligently designed, increase efficiency, are durable and reliable, re-usable, easy to use or reduce equipment costs. He is the principal author of the Cable Management Blog, where you can find network cable management ideas, server rack cabling techniques and space saving tips, data center trends, latest innovations and more.
Visit https://andcable.com or shop online https://andcable.com/shop/