PCB Surface Finish Lead-Free HASL vs ENIG - PCBONLINE

30 Sep.,2024

 

PCB Surface Finish Lead-Free HASL vs ENIG - PCBONLINE

PCB surface finish is a metal or organic coating on PCB pads that protects the copper and boosts solderability. Lead-free HASL (hot air solder leveling) is the most common PCB surface finish, and if you don't specify which surface finish you want, we assume you want lead-free HASL for your boards.

Goto CHANYEE to know more.

However, lead-free HASL is not allowed for flexible PCBs and rigid PCBs with a thickness smaller than 0.5mm. You have to replace it with ENIG (electroless nickel immersion gold) or OSP (organic solderability preservatives). This article reveals HASL and ENIG and compares them.

Part 1: HASL and Lead-Free HASL

HASL means using tin/lead solder to spray the PCB pads and then using hot air to blow the PCB surface so that the pad surface is level. The thickness of HASL is 1mil to 2mil (25.4μm to 50.8μm, or 0.025mm to 0.05mm).

HASL is a cheap PCB surface finish. And its solderability is good.

However, HASL doesn't meet the lead-free requirements in most of the world, and in most cases, we use lead-free HASL.

The properties of lead-free HASL are pure tin. The thickness of lead-free HASL is 0.1mil to 1mil (2.54μm to 25.4μm, or 0.mm to 0.025mm).

Lead-free HASL is the default surface finish from the PCB manufacturer PCBONLINE. Compared with HASL, PCB pads with lead-free HASL look dim, and the soldering temperatures are higher.

HASL

Lead-free HASL

Properties

Tin and lead (37% of lead)

Tin (lead less than 0.5%)

PCB pad finish

Glossy

Dim

Solderability

Good

A little worse than HASL

Reflow soldering temperatures

210&#; to 245&#;

240&#; to 270&#;

Wave soldering temperatures

About 250&#;

About 260&#;

Though lead-free HASL is common, it can't be applied to rigid PCBs with a thickness smaller than 0.5mm and flexible PCBs, neither HASL. These boards can't bear the spraying force. If you spray tin on these boards, they bend, and only the middle of the boards is sprayed with tin. Sometimes, rigid PCBs with a thickness smaller than 0.5mm may even break if you apply HASL or lead-free HASL to them.

In such cases, you can choose the other PCB surface finish -- ENIG. Or you can also change lead-free HASL to OSP. But OSP is easy to oxide. If you don't solder the PCBs at once, OSP oxides. And the manufacturer has to seal and package the OSP PCBs at once.

Part 2: What is ENIG

ENIG, also known as immersion gold, or chemical Ni/Au, is one of the best PCB surface finishes for almost all PCBs. In any case, if HASL or lead-free HASL can be used, you can replace it with ENIG. But inversely, HASL or lead-free HASL can't replace ENIG.

ENIG means plating a nickel alloy coating on the PCB pads and then a gold coating with chemical reactions. Besides PCB pads, ENIG can also be applied to other areas, such as the PCB edges or wires for thermal dissipation purposes. The thickness of ENIG is 1μm, 2μm, and 3μm. (From the equation 1mil=25.4μm, you can understand how thin the PCB finish ENIG is compared to HASL.)

ENIG PCB pads have a gold color and look shiny. Besides, the solderability of ENIG is the best among all the PCB surface finishes. And because gold has a dense crystal structure and is hard oxide, the protection of ENIG to copper of the PCB pads is also excellent.

Part 3: ENIG vs HASL vs Lead-Free HASL

ENIG PCBs are high-standard PCBs and they are usually used for high-end applications. As we mentioned above, ENIG can take the place of HASL and lead-free HASL in any case if your budget allows, but HASL and lead-free HASL can't replace ENIG.

Below is a comparison between EENIG and HASL.

Contact us to discuss your requirements of lead-free hasl. Our experienced sales team can help you identify the options that best suit your needs.

ENIG

HASL

Lead-free HASL

Meeting lead-free requirements or not

Yes

No

Yes

Price

High

Low

Middle

Thickness

1μm, 2μm, and 3μm

25.4μm to 50.8μm

2.54μm to 25.4μm

Finish method

Chemical reactions

Spraying

Spraying

Properties

Nickel and gold

Tin and lead

Tin

Applications

Can be used for almost all PCBs

Simple FR4 PCBs with a thickness larger than 0.5mm

Common rigid PCBs with a thickness larger than 0.5mm

Part 4: One-Stop PCB Manufacturer Hassle-Free

PCBONLINE is a one-stop advanced PCB manufacturer founded in , with two large advanced PCB manufacturing bases and one assembly factory. If you have needs for PCB and PCBA fabrication, PCBONLINE can be your reliable PCB/PCBA supplier from prototypes to bulk production.

In PCB surface finishes, PCBONLINE has these advantages:

    • PCBONLINE can fabricate surface finishes including lead-free HASL, ENIG, hard gold plating, immersion silver, OSP, carbon ink, immersion tin, and palladium plating.
    • We can achieve selective PCB surface finishes on your PCBs without a limit.
    • Our engineers do free DFM (design for manufacturing) and you can stay hassle-free for your project.
    • We manufacture flexible PCBs, rigid-flex PCBs, high-frequency PCBs, FR4 PCBs, HDI PCBs, AlN PCBs, alumina PCBs, aluminum PCBs, copper-base PCBs, and glass PCBs.
    • We not only fabricate and assemble PCBs but also source electronic components for PCB assembly and assemble the PCBA to be box-built.
    • One-on-one design and engineering support throughout your project.
    • Free sample and functional jig testing for bulk production.

If you need PCB design, fabrication, assembly, and box build assembly, please feel free to contact PCBONLINE by at .

Conclusion

This article gives an introduction to HASL and ENIG separately and compares them. ENIG is universal for PCBs, especially for high-reliability PCBs. HASL doesn't meet the lead-free requirements but lead-free HASL does. If you don't know whether HASL can be used for your PCB or not, ENIG must be okay. You can also contact PCBONLINE for suggestions.


© This article is an original work of the PCBONLINE team. Please indicate the author PCBONLINE if you reprint. If the article is reproduced without permission or indicating the author's source, PCBONLINE reserves the right to investigate the infringement.

lead free solder on regular HASL pads

do not mix Pb solder with the low temp Bismuth-based solders (also there is the different melting point issues, but the alloy that forms is awful). Joint becomes very brittle due to strong intermetallic growth and easy to break with even what I could consider moderate force. For example, with the right (or wrong) mix of solder and a decent grip, I can pull SMD aluminium polymer caps off the board with my bare hands.

I'm pretty sure remember reading a super old IBM article where they investigated this Bi/Pb mix for some temperature sensitive parts in a mainframe, and it was a disaster. Can't find the article now though 

Also from

Quote

Caution must be used when using tin / bismuth alloys. It is dangerous to mix tin / bismuth with lead containing alloys. Tin, bismuth, and lead can form a very low melting combination that melts around 95 °C. This could potentially lead to solder joint failure due to natural heating of the assembly during use.
 
Tin / bismuth alloys are safe to use in combination with other lead free tin-based alloys. In some cases surface mount assemblies are made with SAC305 on the first side and tin / bismuth on the second side. The low reflow temperature for tin / bismuth minimizes intermetallic growth in the SAC305 solder joints and allows for soldering of thermally sensitive components.

Definitelymix Pb solder with the low temp Bismuth-based solders (also there is the different melting point issues, but the alloy that forms is awful). Joint becomes very brittle due to strong intermetallic growth and easy to break with even what I could consider moderate force. For example, with the right (or wrong) mix of solder and a decent grip, I can pull SMD aluminium polymer caps off the board with my bare hands.I'm pretty sure remember reading a super old IBM article where they investigated this Bi/Pb mix for some temperature sensitive parts in a mainframe, and it was a disaster. Can't find the article now thoughAlso from http://www.surfacemountprocess.com/low-temperature-lead-free-solder-paste.html

If you want to learn more, please visit our website multilayer pcb design tips.